硕士生董浩在Langmuir发表CO2驱油研究
发布时间: 2023-04-24  作者:  浏览次数: 10


近日,课题组硕士生董浩论文“Effects of Shale Pore Size and Connectivity on scCO2 Enhanced Oil Recovery: A Molecular Dynamics Simulation Investigation”Langmuir(2022年中科院SCI期刊二区期刊,IF=4.311)接收!



ABSTRACT:

The differences in pore width distributions and connectivity of shale reservoirs have significant influences on supercritical carbon dioxide (scCO2)-enhanced oil recovery (CO2 EOR) in shale. Herein, the molecular dynamics simulation was adopted to investigate the microscopic mechanism of CO2 EOR in the shale nanopores with different pore size width distributions and pore connectivity. The results show that the pore connectivity has significant effects on the oil displacement, and the recovery efficiency is ordered as: connected pore > double pore > single pore for the 3 nm pore, which are 91.32, 74.43, and 65.93%, respectively. Therefore, the increase in pore connectivity can significantly improve the recovery efficiency of the small pore of the connected pore system. For the shale reservoirs with different pore width distributions, the oil recovery rate of large pores is generally higher than that of small pores. In addition, the displacement of oil in the small pore of the double pore system is accelerated due to the pushing effect of the discharge fluid from the large pore. The results furnish a certain theoretical support for the research of the microscopic mechanism of CO2 EOR in the shale pore with different pore width distributions and connectivity and the exploit of shale oil.


https://pubs.acs.org/doi/full/10.1021/acs.langmuir.3c00904